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NUMERICAL TECQUES IN MATEATICAL PROGRAM!OG

by

R. H. Bartels, G. H. Golub, M. A. Saunders

Abstract

The application of numerically stable matrix decompositions to

minimization problems involving linear constraints is discussed and

shown to be feasible without undue loss of efficiency.

Psart A describes c aqutation and updating of the product-fora

of the ILJ decomposition of a matrix and shca s it can be applied to

solving linear systems at least as efficiently as standard techniques

using the product-form of the inverse.

Part B discusses orthogonalization via Householder transformations,

with applications to least squares and quadratic programzIng algorithms

based on the principal pivoting method of Cottle and Dantzig.

Part C applies the singular value deccmposition to the nonlinear

i" least squares problem and discusses related eigenvalue problems.
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Sintroduction

This paper describes the application of numerically stable matrix

decompositions to minimization problems involving linear constraints.

Algorithms for solving such problems are fundamentally techniques for
the solution of selected systams of linear equatio~ns_ and during nh .

* last fifteen years there has been a major improvement in the understanding

of these and other linear algebraic problems. We show here that methods

* which have been analysed by various workers and proven to be rrmerical&y

J. stable may be employed in mathematical prograuming algorithms without

undue loss of efficiency.

Part A describes means for computing and updating the product-form

of the WL decomposition of a matrix. The solution of systems of equations

I by this method is shown to be stable and to be at least as efficientras standard techniques which use the product-fona of the inverse.

In Part B we discuss orthogonalization via Householder transformations.

Applications are given to leas 'squares and quadratic programming algorithms

based on the principal pivoting method of Cottle and Dantzig [5 1. For

I further applications of stable methods to least squares and quadratic

? piogramring, reference should be made to the recent work of R. J. Hanson [13]

and of J. Stoer [26] whose algorithms are based on the gradient projection

SI method of J. 3. Rosen [24].

In Part C the application of the singular value decomposition to

3 the nonlinear least squares problem is discussed, along with related

eigenvalue problems.
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J A. THE USE OF LUJ DECOMPOSITION IN EXCHANGE AIWORITHMw

1 1. ID DecoJposition

If B is an n x n , nonsingular matrix, there exists a permutation

m-atrix IT , a lower-triangular matrix L with ones on the diagonal, and

an upper-triangular matrix U such that

1 (1.1) 1TB = LJ.

It is possible to choose ff , L , and U so that all elements of L

are bounded in magnitude by unity.

A frequently-used algorithm for computing this decomposition is

built around Gaussian elimination with row interchanges. It produces

the matrices iT and L in an Implicit forum as shown:

For k = 1,2,...,n-1 in order carry out the following

two steps:I
(1.2) Find an element in the k-th column of B , on or below the

diagonal, which has maximal magnitude. Interchange the

k-th row with the row of the element found.

(1.3) Add an appropriate multiple of the resulting k-th row to each

I row below the k-th in order to create zeros below the diagonal

in the k-th column.

I
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Each execution of the first step (1.2), in matrix notation, amounts

to the premultiplication of B by a suitable permutation matrix fk

The following step (1.3) may be regarded as the prwmultiplication of B

by a matrix r k of the form

k

I

k1

(n,k1

where 1•i, I <1 for each i k+l,...,n

By repeating the two steps n-i times, B is transformed into U

And at the same time the matrix (L-'Tr) is collected in product form

(1.5) L 1Tl = r nli.1 .i.tn-1•

This algorithm requires n3 /3 + O(n2 ) multiplication/division operations

and again this many addition/subtraction operations. Both U and all

of the gi, can be stored in the space which wan originally occupied b B

* j An additioml n locations are required for the essential information contained

in the T

2



*1
2. Ztebane A2goritbms

Many algorithms require the solving of a sequence of linear equationu

(2.1) B (i)- x=v

"for which each B(i) differ# from its predecessor in only one column.

.Emples of such algorithms are: the simplex method, Stiefel's exchange

method for finding a Chebyshev solution to an overdeterzined linear

equation system, and asjacent- path methods for solvin- the cmplementary-

pivot prog ,mning problem.

Given that B(O) has a deccuposition of the form

(2.2) B(0) _L(O)U(O)

where U () s iuer-triangular, and given that L(0)'I has been

stored as a product
(a. .(0) T, (o) r(0) (0)

(2.3) (-I n-1 "" 1

the initial system of the sequence is readily solved: Set

(2.4) = ,()'(O)

and then back-solve the triangular system

(2.5) U(°)=y Y

(I



5. Updating the LU Decomposition

Let the column r of Bý0) be replaced by the column vector a(0)

So long as we revise the ordering of the ,krowns accordingly, we may

(0)insert a into the last column position, shifting columns r +1

through n of B one position to the left to make room. We will

call the result , and wc can easily check that it has the

decomposition

"ý.l) B~ L L H

where Hi' is e matrix which it upper-Hessenberg in its last n -r 0+1

columns and upper-triangular in its first ro-I columns. That is,

S1(l) has the form

r0

(3.2) z

The first ro-i columns of H(I) are identical with those of U(0)

The next n-rO are identical with the last n-r columns of U(0)

And the last column of H (1) is the vector L(O) a(0)

H(1) can be reduced to upper-triangular form by Gaussian elimination

with row interchanges. Here, however, we need only concern ourselves

with the interchanges of pairs of adjacent rows. Thus U(I) is gotten

'4
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L1

from H(1) by applying a sequence of uliple transformations:

(•.•) v(1) . r (1) r rI r(1) _ i (1) :U f-i n-I ?a ?f ro ••

where each r has the form

S']

11
- -"

(3.?.
i+ 1• ..

1

i i+1

and each 11i) is either the identity matrix or the identity with the i-th

and 1+1-,t rows exchanged, the choice being msde so that ,4-)1 <1 .

The essential information In all of these transformations can be

stored In n-r 0  locations plus an additio•al n-ro bits (to indicate

the interchanges). If we let

! 5
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(5.3 L(1)"11(i) (I) ,(1) ) L(O"
-- )n-i n-i r r

0 0

then we have achieved tine decomposition

(•.6) J :(1)

The transition from B', to B% for any i is to be made

exactly as war, the transition from B(O) to B(). Any system of

linear equations involving tLu matrix P.() for any i is to be solved

according to the steps given in (-.k) and (2.5).

[6
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4. Round-off Considerations

For most standard computing machines the errors in the basic

arithmetic operations can be expressed as follows:

()fl(a + b) a (1 + b(1+ 2)

(4.1) fl(a x b) w ab(l + E

fl(a/b) = (a/b)(1 +

where Iil < t Here 0 stands for the base of the number system

in which machine arithmetic is carried out and t is the number of

significant figures which the machine retains after each operation. The

notation fl(a "op" b) stands for the result of the operation "op"

upon the two, normal-precision floating-point numbers a and b when

standard floating-point arithmetic is used.

The choice of an WiJ decomposition for each BM and the particular

way in which this decomposition is updated were motivated by the desire

to find a way of solving a sequence of linear equations (2.1) which would

retain a maximum of information from one stage to the next in the sequence

and which would be as little affected by round-off errors as possible.

Under the assumption that machine arithmetic behaves as given in (4.1),

the processes described in Sections 2 and 3 are little affected by

round-off errors. The efficiency of the processes will vary from algorithm

to algorithm, but we will argue in a subsequent section that the processes

should cost roughly as much as those based upon product-form inverses

j of the B(t)

Sl7
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We will now consider the round-off properties of the basic steps

described in Sections 2 and 5.

The computed solution to the triangular system of linear equations

(.1) U~i)x = y

car, be shown, owing to round-off errors, to satisfy a perturbed system

(4.3) (u(m) + bu(i))x =y

It is shown in Forsythe and Moler [9 ] that

(4.4) iioi • • (i.1)OWIt

where !1'" " denotes the infinity norm of a matrix, and thus round-off

errors in the back-solution of a triangular system of linear equations

may be regarded as equivalent to relatively small perturbations in the

original system.

Similarly, the computed L and U obtained by Gaussian elimination

with row interchanges from an upper-Hessenberg matrix H satisfy the

perturbed equation

(4.5) H+6H=I= ,

where Forsythe and Moler show that

(4.6) H < nP1 1-t
11HII -

and Wilkinson [28] establishes that p <n . Thus, the computational

i• 8
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process indicated in (3.3) can be regarded as introducing only relatively
small perturbations in each of the H(I). i

f milar results hold for the initial LU deccmposition (2.2) with

a different bound for p The reader is referred again to Forsythe -

and Moler.

- - The most frequent computational step in the processes which we have

described is the application of one Gaussian elimination step r to a

column vector v :

1 V

Vi-1
i ,,___I vi_"

Vi+1i

(4.7) w =rv=
1 V

v-1a g 1Va

1 V•1+1

1a V

I - J- I-

: i J

The computed vector w satisfies

I (i4.8) Wk =Vk for k J

wI -- fft(gvi) + vj)

I - £vi(I + Y)(l +e) + vj (1 + C2)

8vjL +Vj + gV 1 (C.1 + E + 2 E)+ Vjg 2



Thus we may regard the computed vector w as the exact result of a

perturbed transformation

(4.9) w = (r + 8r)v ,

where

i

(4.1o) Br --

atd

(4.13.) a = g(E1 + E3 + F.IE3)

T = e2•

Therefore we have

( .12) ll..r_ < IE + IE2

lirli - 1 + IgI

where the right-hand side is bounded, since I gj <1 , according to

(.1) [l3l_+ < 1 -tI < 3.01.-t (say).

Hence, the computations which we perform using transformations (4.7) also

introduce relativel3y ,aUll perturbations into the quantities which we manipulate.

10
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It in precisely with regard to such transformations that we feel
I ~our method of computation, based upon LU decompositions., in superior

to methods based upon the inverses of the matrices B(i) .Such methods i

use transformations of the form

I -

I . .I(4.:L) k

%+1

j k

These are applied to each column in B('-1) to produce B() ; or

alternatively, in product-form methods, they are applied to the vector

v(i) to produce the solution to system (2.1). As mch, they involve

successive ccomputations of the form (4.7). Each such computation may be

regarded as satisfying (4.9). But, since the q, may be unrestricted in

magnitude, no bound such as (4.13) can be fixed.

I



5. Efficiency Considerations

As we have already pointed out, it requires

(5.1) n2/3 + O(n2)

multiplication-type operations to produce an initial IU decomposition (2.2).

To produce the product-form inverse of an n x n matrix, on the other

hand, requires

(5.2) n3/2 + O(n2)

operations.

The solution for any system (2.1) must be found according to the W-

decomposition method by computing

(5.3) yo a L 1 1 (i)

followed by solving

(5.4.) U (i)x = y•

The application of L( 0 )- to vMi) in (5.3) will require

ri(n-1)(5.5)2
2

operations. The application of the remaining transformations in L(i)'l

will require at most

(5.6) i(n-1)

opertions. Solving (5.4) costs

32
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I (5-7)
2

I operations. Hence, the cost of (5.3) and (5.4) together is not greater than

(5.8) n2 + i,'n-1)

operations, and a reasonable expected figure would be n 9 (n-1)

On the other hand, computing the solution to (2.1) using the usual

I • product form of BV -l requires the application of n+i transformations

of type (4.14) to v(i) at a cost ofI
0

~5.) n + inI
operat ions.

If a vector a(i) replaces column r1  in B(i) , then the

updating of B(i)-I requires that the vector

(5.10) z = B(i)a(i)

be computed. This will cost n2 + in operations, as shown in (5.9). Then

I a transformation of form (4.14) must be produced from z , and this will

bring the total updating cost to

(5.11) n2 + (i+1)n

"The corresponding cost for updating the Il decomposition will be not more

than

1(5.12) 2~-1 + i(n'-l)

operations to find L('ai , followed by at most

1 13
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!ýn+l)

2

operations to reduce H(iEl) to U(i+l) and generate the transformations

of type (3 .4) which effect this reduction. This gives a total of at most

(5.l1) n+ 2 i(,-I)

Soperations, with an expected figure closer to n 2+ 1 (n-1).

Hence, in every case the figures for the LU decomposition: (5.14),

(5.8), and (5.1) are smaller than the corresponding figures (5.11), (5-9),

and (5.2) for the product-form inverse method.

14



6. Storage Considerations

All computational steps for the W-decomposition method may be

organized according to the columns of the matrices BM . For large

systems of data this permits a two-level memory to be used, with the

Sh ~ high-speed memory reserved for those columns being actively processed.

The organization of Gaussian elimination by columnns is well-known,

and it in clear how the processes (5.-3) may be similarly arranged.

Finally, the upper-triangular systems (5.4) can be solved column•ise

Sas indicated below In the 4 x 4 case:

"= ". U 13 U 1 /' l 71

(6.1)

o 0 0 /a ,

Bring the y vector and the last column of U into high-speed

memory. Set = . Set 4 = "± for i = 3,2,1

This leaves us with the following 3 x 3 system:

I.. 'al2 u13 x

(x.\

1(6.2) 0o u2. u2 ' 2 Y.

0 0

We process it as suggested in the 4 x ,4 case, using now the third

co3lmn of U to produce xz . Repeat as often as necessary.

S15a :



In the event that the matrices B' are sparse as well as largep

we wish to organize computations additionally in such a way that this

sparseness is preserved as imich as possible in the decompositions.

For the initial decomposition (2.2), for example, we would wish to

order the colurans of D'0) in such a way that the production of L'

and U(0) introduce as few new nonzero elements as possible. And at

subsequent stages, if there is a choice in the vector a(i) which is

to be introduced as a new column into the matrix Bi to produce B

it may be desirable to make this choice to some extent on sparseness

considerations.

It is not generally practical to demand a minimum growth of nonzero

elements over the entire process of cmnputing the initial decomposition.

However, one can easily demand that, having processed the first k-i

columns accordlng to (1.2) and (1.3), the next column be chosen fram those

remaining in such a way as to minimize the number of nonzero elements

generated in the next execution of steps (1.2) and (1.3). See, for

example, Tewarson [27] Choice of the next column may also be made

according to various schemes of "merit"; e.g., see Dantzig et al. [6].

The introduction of new nonzero elements during the process of

updating the i-th decanposition to the itl-st depends upon

(6.3) the nonzero elements in L(i)a(i) over those in a~i)

and

(6.4) the nunber ri of the column to be removed from BM

16
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I I
INo freedom is possible in the reduction of H(i'+) to U('+l) once I

Sa(i) has been chosen and the corresponding ri has been determined.

The growth (C.7) can be determined according to the techniques

outlined in Tewarson's paper, at a cost for each value of i , however,

wrAch is probably unacceptable. The more important consideretion is (i.t), I
The larger the value of r 1 , the fewer elimination steps must be carried

out on H and the less chance there is for nonzero elements to be

generated. Again, however, the determination of the value of ri

corresponding to each possible choice of a(i) may prove for most

algorithms to be unreasonably expensive. 1

I

17
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7. Accuracy Conniderations

During the execution of an exchange alzorithm it sometimes becomes

necessai-y to ensure the highest possible accuracy for a solution to one

of the systems (2.1). High accuracy is generally required of the last

Solution in the sequience, and it may be required at other points in the

sequence when components of the solution, or nu.bers compufted from them,

approach critical values. For example, in the simplex method inner

products are taken with the -!ctor of simplex multipliers, obtained by

solving a system involving 5(i) , and each of the non-basJc vectors.

The computed values are then subtracted from appropriate components of

the cost vector, and the results are compared to zero. Those which are

of one sign have importance in determining how the matrix B(i+l) is

to be obtained from B(i) . The value zero, of course, is critical.

The easiest way of ensuring that the computed solution to a system

(7.1) Bx = v

has high accuracy is by employing the technique of iterative refinement

[9 , Chapter 13]. According to this technique, if x(O) is any sufficiently

good approximation to the solution of (7.1) (for example, a solution

produced directly via the 111-decomposition of B ) then improvements may

be made by computing

(7.2) r(J) =v - Bx(j)

solving

(7.3) Bz(j) r(j)

18



1 and setting

(7.4) x(J+=) = x(j) + z(JlI
for j - 0,1,2,... until !! is sufficiently small. The inner

j products necessary to form the residuals (7.2) must be computed in

double-precision arithmetic. If this rule is observed, however, and if

the condition of the system, measured as

(7.5) cond(B) = 1! B 11 flB'It1, ,

j is not close to St-1 , the refinement process can be counted on to

terminate in a few iterations. The final vector x(j) will then be

as accurate a solution to (7.1) as the significance of the data in B

and v warrant.

Step (7.3) is most economically carried out, of course, via the

same lU-decomposition which was used to produce x(O) . If this is

done, each repetition of steps (7.2) through (7.4) will cost only
2O(n ) operations. The alternative approach of producing a highly

accurate solution to (7.1) by solving the system entirely in double-

precision arithmetic is generally more expensive than iterative

refinement by a factor of n

I
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B. THE QR flBOMPOSITION AND QUADRATIC PROGRAMMING

8. Householder Triangularizat ion

Householder transformations have been widely discussed in the

literature. In this section we are concerned with their use in reducing

a matrix A to upper-triangular form, and in particular we wish to -show

how to update the decomposition of A when its columns are changed one

by one. This will open the way to the implementation of efficient and

stable algorithms for solving problems involving linear constraints.

Householder transformations are symmetric orthogonal matrices of

the form P. -- OkU T where u is a vector and ok = 2/( Uu)'
k ~kukk where Uk

Their utility in this context is due to the fact that for any non-zero

vector a it is possible to choose uk in such a way that the

transformed vector P ka is zero except for its first element.

Householder 115] used this property to construct a sequence of transformations

to reduce a matrix to upper-triangu.lar form. In [29], Wilkinson describes

the procevss and his error analysis shows it to be very stable.

Thus if A = (al,...,an) is an mxn matrix of rank r , then

at the k-th stage of the triangularization (k < r) we have

A~k) Rk S)

A(k)= k- Pk-2 ... P0 A k /
0 T k

where Rk is an upper-triangular matrix of order k . The next step

is to compute A(k+l) Pk A(k) where P. is chosen to reduce the first

20
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column of T1 to zero except for the first component. This component

k

becomes the last diagonal element of Rk+l and since its modulus is

equal to the Euclidean length of the first column of T it should in
k

general be maximized by a suitable interchange of the columns of

S,( k After r steps. T7 will be effeetively zero (the length
Tk /

of each of its columns will be smaller than some tolerance) aid thU

process stops.

Hence we conclude that if rank(A) r then for some permutation

matrix Tr the Householder decomposition (or "QR decomposition") of A is

r n-r

QAT = Pk-! Pk-2 P A-

where Q= Pr r2 PO is an m Xm orthogonal matrix and R is

upper-triangular and non-singular.

We are now concerned with the manner in which Q should be stored

and the means by which Q , R , S may be updated if the columns of A

are changed. We will suppose that a column a is deleted from A and

that a column aq is added. It will be clear what is to be done if only

one or the other takes place.

Compact Method:

Since the Householder transformations Pk are defined by the vectors

uk the usual method is to store the uk's in the area beneath R , wi*h

a few extra words of memory being used to store the O'I and the diagonal

21



elements of R The product Qz for some vector z is then easily

computed in the form P Pr-2 - PO z where, for example,.

PCz = (I--oUUo)z z-•o(uoz)u 0 . The updating is best accnmplished

as follows. The first p-I columns of the new R are the same as

before; the other columns p through n are simply overwritten by

columns 0%. a )a and transformed by the product P P P
n q pi p-2  0

to obtain a new S(P ; then T is triangularized as usual.

_1 p-i

This method allows Q to be kept in product form always, and there is no

accumulation of errors. Of course, if p = 1 the complete decomposition

must be re-done and since with m > n the work is roughly proportional

to (m-n/3)n 2 this can mean a lot of work. But if p " n/2 on the

average, then only about 1/8 of the original work must be repeated

each updating.

Explicit Method:

The method just given is probably best when m >> n . Otherwise

we propose that Q should be stored explicitly and that the updating

be performed as follows:

(1) The initial Q can be computed by transforming the identity

matrix thus:

Pr- 1 k-2 "" PO(W I : (
0

22



(2) If aq is added to A then compute sq Qaq and add it

to the end of 0

(7) Delete ap where applicable (p < r) . This normally means

just updating the pe?.mutation vector used to describe Tr

(4) The initlal situation

P

qA010

has thus been changed to

q

-- -I.....

____________ 6N

where the areas j, ( , (D ) are the same as before.

23



This is analogous to the Hessenberg form encountered in

updating Wl decompositions. We now employ a sequence of

(r-p) plane rotations, as used by Givens and analyaed

by Wilkinson [3011, to reduce the subdiagonal of area Q

to zero. This changes areas Q ,D and 0 ' and the

corresponding rows of Q must also be transformed. Since

the plane rotations are elementary orthogonal transformations,

the latter step produces a new matrix Q which is also

orthogonal, and the work necessary is approximately proportional

to 2= + n

(5) Finally, a single Householder transformation Pr is applied

to produce Q PrQ , where this transformation is the one

which reduces area D to zeros except for the first

element. The work involved is proportional to 2(m-n)m

Thus the transformation Q reduces AT to a new upper-triangular

forn, and the original transformations PO'" I ' Pr-1 , the plane rotations,

and the final Householder transformation may all be discarded since the

required information is all stored in Q . The total work involved is

roughnly proportional to (2an + n2) + 2(m - n)m = 2m2 + n2 and the stability

of the orthogonal transformations is such that accumulation of rounding

errors during ripeated applications of the updating process should be

very slight.

24
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9. Projections

In optimization problems involving linear constraints it is often

necessary to compute the projections of some vector either into or

orthogonal to the space defined by a subset of the constraints (usually

the current "basis"). In this section we show how Householder

transformations may be used to compute such projections. As we have

shown, it is possible to update the Householder decomposition of a

matrix when the number of columns in the matrix is changed, and thus

we will have an efficient and stable means of orthogonalizing vectors

with respect to basis sets whose component vectors are changing one by

one.

Let the basis set of vectors aO, a 2 , ... ,an form the columns of

an mx n matrix A , and let Sr be the sub-space spanned by [aid

We shall assume that the first r vectors are linearly independent

and that rank(A) = r . In general, m > n > r , although the following

is true even if m < n.

Civen an arbitrary vector z we wish to compute the projections

u - Pz , V= (I-P)z

for some projection matrix P , such that

(a) z = u + v

(b) U T v .

(c) uESr (i.e., Ix such that Ax - u)

(d) v is orthogonal to Sr (i.e., ATv v 0)
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One method is to write P as AA÷ where A+ is the n x m generalized

inverse of A , and in [7 ] Fletcher shows how A+ may be updated

upon changes of basis. In contrast, the method based on Householder

transformations does not deal with A÷ explicitly but instead keeps

AA+ in factorized form and simply updates the orthogonal matrix reruircd

to produce this form. Apart from being more stable and jus as efficient,

the method has the added advantage that there are alviys two orthonormal

sets of vectors available, one spanning Sr and the other spanning its

complement.

As already shown, we can construct an m x n orthogonal matrix Q

such that

r n-r

QA =~~

where R is an r x r upper-triarjular matrix. Let

(9.1) w = z W -Sw) m-r

and define

u Q T1) 0 v WQ (2)

Then it is ealily verified that u,v are the required projections of z

which is to say they satisfy the above four properties. Also, the x in.
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(c) is readily shown to he

in effecc'. we are representing Lhe pro.jection matricea in the form

P r (I Ir O)Q

0

and

and we are computing u Pz , v = (I-P)z by means of (9.1), (9.2).

The first r columns of q span Sr and the remaining m-r span

its comlplement. Since Q and R may be updated accurately and

efficiently if they are c mmputed using Householder transformations, we

have as claimed the means of orthogonallziný- vectors with respect to

varying bases.

As an example of the use of the projection (9.4), consider the

problem of finding the stationary values of xTAx subject to = 1

and C Tx = 0 , where A is a real symmetric matrix of order n and C

is an nxp matrix of rank r , with r <p <n. It is shown in [12]

that if the usual Householder decomposition of C is

r n-r

P S,
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then the problem is equivalent to that of finding the eigenvalues and

eigenvectors of the matrix PA, where

(0 1
"(K Onr)Q

i• the projection matrix in (9.4). It can then be shown that if

QAQT = 
G12

where G is r xr , then the eigenvalues of PA are the same as

those of G and so the eigensystem has effectively been deflated

by the number of independent linear constraints. Similar transformations

can be applied if the quadratic constraint is XTBx - 1 for some real

positive definite matrix B

*28
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2 ?t)1 tC ~txr~la~ZCwithý "respect to a vi cf Tis It.

~2t m.;ll x . ;. lOW slio; 'W, u!,w ) ~AjsW .~L-P..'" t. - . -. 4l,

::otL~t!:csl, I oi l' :vO c:(th t'emct mnAc. in th;e lac'

Q''flP"':;.a fly', rCu..j . a 1 1 ,&;n htic '.

*..C &i rcLtal.--etfrz it is required t,- P'Me Lnd P

Ut

(d) ~~~

for simplicity we will assime tkhat rank.;A) n .'Fu'cri, rather than

compruting F explicitly as Fletc::cr- dues accordinrý to,

we obtain tiis- Choieskvi decomposition of 11 thus:

where L is Jnwer-triangular and non-sing~ular if D) is positive

definite. We then compute B L TA and obtain the decompos.ition

QB = (R
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I
Defining= QTz = )

I w2 }•-n

j and

I U = L~'~ (0) , .=Lk' (0)2

I
it is easily verified that u,v are the required projections, 1nd

again the x in (c) is given by x R'IWl • Since changing a column

ak of A is equivalent to changing the column LT ak of B . the

fmatrices Q and R may be updated almost as simply as before.

I
I
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11. Linear Least Squares and Quadratic Pr'oiram.-inri

We first consider minm.ization of quadratic forms subject to

linear equality constraints. The solution Is ,;iven by a sin,rle sySte",

cf equations and the aloritu we describe for solving tnis syste., will

serve as a basic tool for solving problems with inequality constraints.

It w 11 also provide an extample .' ..- ;w solutions to, even stroongly

ill-ccoditioned problems may be obtained accurately if orthogonalization

techniaues are used.

Let A,G be given matrices of orders n x n , p Y n respoctively

and let bh be given ;ectors of consistent di.,ension. The least

squares problem to be considered here is

Problem LS: min - Axi! 2

subject to Gx - h

Similarly, let D be a given positive semi-definite matrix and c

a given n-dimensional vector. The quadratic programming problem

corresponding to the above is

Problen QP: min 1T x

subject to Gx = h

Now we can obtain very accurately the following Cholesky decomposition

of D

D =ATA

31
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where we deliberately use A again to represent the triangular factor.

If D is semi-definite, a symmetric permutation of rows and columns

I will generally be required. If D is actually positive definite then

A will be a non-singular triangular matrix.

I With the above notation, it can be shown that the solutions of both

problems satisfy the system

f zh
J(.)I A r - b

* 1 11.) Q T AT A)r = :
whereI

Ch= 0 , r = b-Ax for Problem IS,

I b - O , r - -Ax for Problem UP,

i and z is the vector of Lagrange multipliers. In [ 2 3 J methods

for solving such systems have been studied in depth. The method we

give here is similar but more suited to our purpose. This method has

been worked on independently by Leringe and Wedin [17']. The solution

I of (11.1) is not unique if the quantity rank(A) is less than nf

but in such cases we shall be content with obtaining one solution rather

than many. The important steps follow.

1 (1) Let 1 be the orthogonal matrix which reduces GT to triangular

form, and let 01 also be applied to AT , thus:

, (11.2) Q 1(GTIAT) ( 1  S)

0 I

I
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As explained earlier, Q1  can be constructed as a sequence of

Householder transformations, and the columns of GT should be

permuted during the trianularization. This allows any redundant

constraints in cx = h to oe detected and discarded.
m

(2) Let b2 ie the orthoý-onal matrix whicri reduces TT to triar.ilar

form:

(11 "3) Q2T T  (R .

Here we assume for simplicity that T is of full rank, which is

equivalent to assuming that (11.1) has a unique sclution, and

again we suppress permutations fram the notation.

(5) The combined effect of these decompZ.sitions is now best regarded

as the application of an orthogonal similarity transformation to

system (12.1), since the latter is clearly equivalent to

I2 A Q ) Q2r Q2b

The resulting system consists of various triangular sub-systems

involving RI , , S , and can easily be solved.

(4) If desired, the solution thus obtained can be improved upon via

the method of iterative refinement [9 ], since this just involves

the solution of system (11.1) with different right-hand sides, and

the necessary decompositions are already available.
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I
j The algorithm Just described has been tested on extremely ill-conditioned

syst~ems involving invJerse Hilbert matrices of high order and with iterativeI refinement has given solutions which are accu~rate t~o full machine precision.

I
I
I
I
I

I

I
I
I
I
I
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12. Positive Definite Projram.minr

With the algorithm of the previous section available, we are no:w

prepared to attack the following mcre Leneral progranrting problano:

Problem LS: min '.b - AxV1

subject to ,i X hI

Problem QF: min I xTDx + cTx2

subject to the same contraints.

Let GI,G 2 be of orders Pl xn , P2 x n respectively, and again suppose

that D has the Cholesky decomposition ATA . In this section we

consider problems for which rank = n (which is most likely

to be true with least squares problems, though less likely in QP ).

In such cases the quadratic form is essentially invertible (but we

emphasize that its inverse is not computed) and so x can be eliminated

from the problem. WIth the notation of the preceding section the steps

are as follows:

(1) Solve (11.1) with Glh 1 to get the solution x = x. , then ccmpute

the vector q = G2 x, -h2

(2) If q > 0 then x0 is the solution.

Otherwise, transform the inequality matrix using Q1 from step (1),

so that

l(G., ~ A }-)0 n-P1

35

-4



ii

(3) If QT ( R2 as before a7d If M R2TVT it can be shown that

the active constraints are determined by the following linear

. I complementarity problem (IWP):

'T-

S(12.1) w q + MTMz

1 > V,_O z

w, z are respectively the slack variables and Lagrange multipliers

I associated with the inequality constraints.

(4) The active constraints (for which w= 0 in the solution of

tthe ICP) are now added to the equalities Glx = hI and the final

I solution is obtained from (11.1).

SIWe wish to focus attention on the method by which the WCP (12.1) is

solved. Cottle and Dantzig's principal pivoting method [ 5] could be

applied in a straightforward manner if MTM were computed explicitly,

but for numerical reasons and because M TM (p 2 x p2 ) could be very

large, we avoid this. Rather we take advantage of the fact that no more

than n -p 1 inequalities can be active at any one time and work with a

basis M made up of k columns of M where I < k <n-p- . The QR

decomposition

I is maintained for each basis as columns of M are added to or deleted

Sfrom MI and as we know, Q and R can be updated very quickly each
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change. Then Just as in the TA method for linear programmning, the new

basic solution is obtained not by updating a simplex tableau but simply

by solvlrZ the appropriate .y..t.. of equations using the availatle

decomposition.

As an example we show how caiplementary basic solutions may be

ontained. Let the basis contain k columns of M. and let 12

be the remaining (non-basic) columns. The system to be solved is

( = ()+ ) ZB

q11)

with obvious notation. If we define y =-MzB this is best written as

(~i M z By

MT 1) ( Y

(12.3) 2 = - M2 y

and the solution of (12.2) is readily obtained from

u = RTq1  Z B -R- = qT ( u) k
0 n-p 1-k

The blocking variable when a non-basic variable is increased can be

found frcm the solution of the same set of equations with the appropriate

right-hand side. It is worth noting that the equations can be simplified
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if the basis is square (i.e., if there are as many constraints active

as there are free variables). Since it seems very common for the basis

* to fill up during the iterations (even if the final solution does not

have a full set of constraints) it is worth treating a full basis

specially.

Almost-complementary solutions can be obtained in similar fashion

(with somewhat more work required as the system is then not quite so

jsymmetric). Thus an algorithm. such an Cottle and Dantzig's can be

implemented using these techniques, and convergence is thereby guaranteed.

Of special interest, however, is the following unpublished and

apparently novel idea due to Yonathan Bard, with whose permission we

I report the results he has obtained. Almost-caoplementary bases are

never allowed to occur; instead, if a basic variable is negative,

then it is replaced by its complement regardless of the effect on the

"- i other basic variables. Bard has tried this method (carried to convergence)

on hundreds of problems of the form v = q+ Mz and cycling has never

occurred when the most negative element of q is chosen. In a series

of tests on 200 randomn matrices of orders between 2 and 20 ,

principal pivoting required a total of 537 pivots whereas the

* Cottle-Dantzig algorithm required 689

The present authors' experience with fewer but larger problems

S jconfirms the above observation that convergence does actually occur and

usually after a smal number of iterations. Since the idea eliminates

all work other than computation of complementary solutions it is

* partioaarly suited to the techniques of this section. At worst it should
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be used as a st•.rting procedure to find i, close-to-optimal basis quickly,

and at best if the conjecture can be provcn that it will always converge,

then a lot of computer time could be saved in the future.

[It has since been learned tuat Burd applied the prinopal-pivoting

rule to LCP's of the somew'nat special form in which

M a pTp, q . pTp

for some P, p. Problems of this form have been studied by Zoutendijk

in 131,32] where several pivot selection rules are discussed. Finite-

ness is proven for one rule, but simpler methods (such as Bard's) are

recommended in practize for efficiency.

The question of finiteness for the more general IWP remains open,

and it is likely that somewhat more sophisticated rules (e.g., Cottle

and Dantzig) will be required.
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13. Semi-Definite Programming

We now consider the more general problem in which the rank of the

j quadratic form combined with the equality constraints may be less than n

The method we propose is conceptually as simple as it is stable. It is

I analogous to the revised simplex method for linear programming in that

the essential steps to be implemented are as follows:

(1) Find the current basic solution from a certain system of equations

for which a decomposition is available.

(2) Determine according to a certain set of rules what modifications

should be made to the system to obtain a new basis.

(5) If necessary, update the decomposition and return to step (1).

Thus, suppose that the current basis contains GBx = hB as active

constraints. As in (11.1) the corresponding basic solution is then

given by

(13.1) 1 A

IT
and

(13.2) w B

(Here, 6BI _ h% are the currently inactive constraints, wv the

corresponding slack variables, and zB the Lagrange multipliers or dual

I variables associated with the active constraints.) The elements of zB
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corresponding to an• cquality cInstr'aints .iay be eii.cr positivte or

negative and need never be 1hoked at. Igýiorinf" t::Qse, t';e basic solution

above is optimal if and only Ii

ZE 2ý 0 wid wB_> ?

"A .),P algorithnm" is now to be Z'egarded as the "certain net of' rules"

.,,ýntione ict step 2c=) wl rey z. '.A' and poszi 0y other 4r.fo.i ot.on are

used to deter..ine w.ich constraints s ould le added to or dro.,ped frru .

The efficiency of thýe :lethod will depend on the speed with which this

decision can be a•de and nn the efficiency with which the deýormpcsi.icn

of '13.i) can be updated.

Once again the most promising pivot-selection rule is that of Bard,

as discussed in the previous section. The general idea in this context

is as follows:

(a) Find m =inw , z= mn zi from those eligible

elements of WBZB

(b) If wa < 0 , constraint a could be added.

(c) If z < 0 , constraint 0 could be dropped.

(U If there are already n constraints active and < 0 ,

corstraint C could replace constraint 0 .

We do not conbider here the question of convergence, but as already stated,

this type of rule has been found to work.

The problem of updating the requisite decompositions is more relevant

at present. We discuss this and other points briefly.
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(1) The matrices Q1 ,R1  Equation (11.2) can be updated efficiently

using the methods of 'ection 8.

(2) Q2 ,R 2 obtained from the matrix T in Equation (11.3) unfortunately

cannot be updated, but the work needed to recompute them might often

be very small, for the following reasons:

(a) in Problem LS, a preliminary trianglarization of A (m x n) i
can be applied to obtain an equivalent problem for which m < n

The Cholesky factor of D in Problem QP already has this property.

(b) If there are many constraints active (up to n) then T has

very few rows.

(c) If the rank of the systen is low (relative to n) then T

has very few columns.

(3) Hence the method is very efficient if close to n constraints are

active each iteration, as should often be the ease. It also has the

property, long with Beale's algorithm [1], of being most efficient

for problems of low rank.

(4) The procedure can be initiated with any specified set of constraints

in the first basis, and an initial estimate of x is not required.

(5) Any number of constraints can be handled, in the same way that the

revised simplex method can deal with any nu.mber of variables.

(6) If D = 0 the problem is a linear program and only bases containing

n constraints need be considered. The method reduces to something

like a self-dual simplex algorithm.
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Fina.ll' we note that w.It. sc•;i-.te:Ic) Lt .,• IL is posible

for some basic system (l'.1) to b. :-, .... .. are any solutions

at all then there are man-v (th1, will' n!wa:s be the . with low rank

least sauares rroblems) li.;t, L,, deiv n,•+t "-atter, since :-B is st 11l

uniquely determined. .-owevfer, a low rank quacratnk pr•-oýrm might be

umbounded, and this is rnanifested b? a siniTalar syistem il•l.l) provin6

... b ,,e inconsistent. I:n. e n-e rS.I, z--.i ,I:st means t,:at there arc not yet

enough constraints in the basir, so t.:a. trouble can usually be avoided

b:: initializing the proced-aure wit.:: a .'all set of constraints.

-.
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C. M{E .3rD JJ NONLINEAR LEAST SQUARES

I 11l. The Singular Value Decranposition

Let A be a ra!, m x n matrix (for notational convenience we

1 assume that ir, > n) it is well known (cf. [ 2) that

j (11.1) ;:: .-r

j w!ere UV are orthogcnal matrices and

I ('i 0 •
I0
I 0

0 ~ (m-n) xn

T -cnsists of t-e orthoarxcriized elgenvectors of AA , and

S'! consists of the orthonormalized eigenvectors of ATA . The

diaonal elementB of 2 are the non-negative square roOts of the

eigenvalues of ATA ; they are called singular values or principal values

of A . We assume

a •i > .2ý'->--?an->° .

Thus if rank(A) = r , r+l = at+ 2  an = 0 - The decomposition

1 (14.1) is called the singular value decomposition (SVD).

h
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An n x ni matrix X is said to be tne pseudo-inverse of an m n

matrix A if X satisfies the followincj four properties:

(1.) M, = A Ii) X.AX . Y'. iii) (xA) )CA , (iv) (A4() ALX

We denote the pseudo-inverse by A+ . it can be shown that A* can

always be determined and is unique (cf. [21J). It is easy to verify

that A + = VAUT where A is the nxn matrix

f. = diagta1 c1 1...,c ,,O, ... ,01 . There are many applications of

thP SrTD in least squares problems (of. [ i11).

The SIVD of an arbitrary matrix is calculated in the following way.

First, a sequence of Householder transformations n k , knk=l

is constructed so that

)nl_ n -i -PA '' 2 .. *Qn-l P TAQ = 3

and J is an m x n bi-diagonal matrix of the form

"•2 "2 0

0
0 J (m-n)xn .

The singular values of J are the same as those of A

Next the SVD of J is computed by an algorithm given in [i11. The

algorithm is based on the highly effective QR algorithm of Francis (101 for

computing eigenvalues. If the SVD of J - then A = PXEYTQT so

that U = , V = QY.
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15. Nonlinear Least Squares

Consider the monlizear transformation F(x) y where xeE
n

and yCEm with n < m . We wish to consider the following problem:

min 1%mn! -F(x)112

subject to

(15.1) Gx = h

w}'ere G is a p x n matrix of rank p and heE . A very effectiveP

algorithia for solving such problems is a variant of the Levenberg-Marquardt

algorithm (18,19]; in this section we consider some of the details of the

numerical calculation. Further extensions of the algorithm are given

by Shanno [25] and Meyer [20].

Let us assume that we have an approximation x(0) which satisfies

the relation Gx(0) = h . Then at each stage of the iteration we

determine )(k) so that

(15.2) x(k+l) = x(k) + 5(k)

and

(15.3) C(k) =

Again as in Section 11, we write Q1 GT =(R) where q, is the product

of p Householder transformations and R is an upper triangular matrix.

Let

(15.J4) QP (k)

~(k) n-
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Then from (15.3), we see that A(k) = 0

For notational convenience, let us drop the superscript k

we write x(k) as x0 and x(k+l) an X. '

In the Levenberg-Marquardt algorithn One Jdetermiuv,; Lie vector 6

so that

'15.55) 7- 2 + m1n.

where

r = L - F(xo)

J is the Jacobian evaluated at x. , and X is an arbitrary non-negative

plarameter. From (15.4), we see that (15.5) is equivalent to determining

so that

(Ir-JQT(7 ) I2 + X(I1I1 + 11111)= m2n.S(15.6) 1 " 2 .2

subject to 0

Now let us write j = [M,N] where N consists of the last n-p
T

columns of A Then (15.6) is equivalent to finding s &o that

ON lr-FTll 2 + x I1l112 min.

Consider the SVD of N ; namely

N =UEVT

Then

47



2 2

(17) *(i)= IT,~TI ~IvT7 l2

where

s =U• VT, -

Writing out (15.7) explicitly, we have

=(• -- sj - aj~j) 2 + ()2

where p is the rank of N . (Note p may change from iteration to

iteration.) Then

0 min

when

2 for j =1,2,...,p ,
+ 2

= 0 for J >p

and hence

where v. is the J-th column of V , Thus

I



T(o)

Note it is an easy matter to compute T) (and hence 8) for various

values of X • The algorithm for canputing the SVD can easily be

organized so that s is computed directly [ IJj).

There are several possible strategies for determining X . One

possibility isnto choose X so that

jIb-F (xj())!I, _< l:b-F(x1(%))112

This requires, of course, the evaluation of F(x) at a great many points.

Another posEibility is to choose 5 such that

IIr-n 112 min.

1subject to 1 IFI2 11

This is equivalent to determining X such that

2

When X = 0 , we have the solution to the unconstrained problem and

11MP 8tJj "i

F. a

Let I S -*•f 0 _5 C, then we have the solution to (15.8).

Otherwise, we must determine X. so that

; .• •.'-.•'" ''- '.'.•"•'-'• -''. '..-- ',:.'" ..... .... ..... .. .



J(15.9) s 2

Let

uý C-1  2 0 diag(a2, a2, ... ,aO)

asP

we aesume s. / 0 for ij 1,2,...,p By repeated use of the

relationship

det( X ) Y det(X) det(W-ZX ') if det(X) ý 0

we can show that (15.9) is equivalent to

(15-.10) det((D + ) x)2 - uuT) = 0

which has 2 p roots; it can be shown that we need the largest real

root, which we denote by X ([8]). Let

2

andassumeothat 2 2>0. Note r(o) a2>o,,,l -- *- P
and NO - -a as X -.m , so that 0 <) < - and it is the only

root in that interval. We seek a more precise upper bound for X*.
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From (15.10) we see, using a Raylei.vh quotient argunment, that

k*<max t-Y~ "I" (y TýlY)~ -, #(ý - U1

1y1Y;2

A snort =anipulation then sbows that

' ..... I' +uu "~

T';ts. w* wish to find a root of (15.13) which lies in the interval

given by ý15.11). Nlote that the determinantal equation (15.10)

involves a diagonal matrix plus a matrix of rank one. In the next

sectinn we shall describe an alzorithrn for solving such problems.
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16. Modified Eigensystems

As was pointed out in Section 15, it is sometimes desirable to

determine some eigenvalues of a diagonal matrix which is modified by

n matrix of rank one. Alsc, Powell [23] has recently proposed a

minimization algorithm which requirer the eigensystem of a matrix after

a rank one modification. In this section, we give an algorithm for

determining in O(n 2) nmmerical operations some or all of the eigenvalues

and eigenvectors of D+ uuT where D = diag(di) is a diagonal matrix

of order n and ueEn

Let C = D+ Ctuu ; we denote the eigenvaluesof C by Xl A2 0 ... ,An

and we assume X. and d, > di+I * It can be shown (cf. (30])

that

(1) If a > 0 , di+ au T U > X, d, di_>xi I d, (i= 2,...,n),

(2) If a <0, d, ? -X>di-i (i -1,2,...,n-1) , d n > d+ au

Thus we have precise bounds on each of the eigenvalues of the modified

matrix.

Let K be a bi-diagonal matrix of the form

* 1 52
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and let M diag(pi) Then

~ 2rl ,

T 2

"(161) (pl~k+lrk1) ik+lr kI

P •n rn-i 4n /

is a symmetric, tri-diagonalJ matrix.

Consider the matrix equation

(16.2) (D- +uuT)x = x .

Multiplying (16.2) on the left by K , we have

K(D + a=UT)KITK-Tx= X KKTKTx

or

(16.) (K DKT +aK uuTKF) y = XK K~y

where x = KTy . Let us assume that we have re-ordered the elements of u

so that

ul .... 'up-, o and 0 < JI lup,. .. . I •
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Now it is possible to determine the elements of K so that

0

0

S =u .

0

u
(n

Specifically,

r 0 (i = 1,2,...,p-1) ,

r -ui/uiI (i = pp+l, ... ,n) ,

and we note that Iril 5 1  . (This device of using a bi-diagonal matrix

for annihilating n-i elements of a vector has been used by Bj~rck

and Pereyra [ 4 1 for inverting Vandermonde matrices.) Therefore) if Ku

satisfies (16.4), we see from (16.1) that KDII+aKuuTKT is a

tri-diagonal matrix and similarly K• is a tri-diagonal matrix. Thus

we have a problem of the form

Ay = XBy

where A and B are symmetric, tri-diagonal matrices and B is positive

definite.

In [22], Peters and Wilkinson show how linear interpolation may

be used effectively for computing the eigenvalues for such matrices

when the eigenvalues are isolated. The algorithm makes use of the value

of det(A - XB) . When, A aid B are tri-diagonal, it is very simple

I5



to evaluate det(A - %B) for arbitraoy X . Once the eigenvalues are

computed it is easy to compute the eigenvectors by inverse iteration.

In Section 15, we showed it was necessary to compute a parameter

X• which satisfied the equation

(16.5) det((, + I) 2 - ) V 0

Again we can determine K so that Ku satisfies (16.4) and hence (16.5)

is equivalent to

(16.6) det(K(O + xI)2KT - KuuTKT) - 0

The matrix G(X) - K(Cl + XI)2KT - KuuTK2 is tri-diagonal so that it is

easy to evaluate G(k) and det G(X) . Since we have an upper and
*

lower bound on X , it is possible to use linear interpolation to

find X , even though G(X) is quadratic -in X • Numerical experiments

have indicated it is best to compute G(W) = K(C) + X) 2KT - KuuT
.

for each approximate value of ) rather than computing

G(X) = (K&KT - KuuTKT) + 2XKaKT + X2KKT

The device of changing modified eigensystems to tri-diagonal

matrices and then using lirear interpolation for finding the roots can

be extended to matrices of the form

D U(U c)
Again we choose K so that Ku satisfies (16.4) and thus obtain the

eigenvalue problem Ay = XBy where
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) (

so that A and B are both tri-diagonal and B is positive definite.

Bounds for the eigenvalues of C can easily be established in terms of

1 the eigenvalues of D and hence the linear interpolation algoritim

may be used for determining the eigenvalues of C

5
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